152 research outputs found

    Urban energy simulation based on 3d city models: a service-oriented approach

    Get PDF
    Recent advancements in technology has led to the development of sophisticated software tools revitalizing growth in different domains. Taking advantage of this trend, urban energy domain have developed several compute intensive physical and data driven models. These models are used in various distinct simulation softwares to simulate the whole life-cycle of energy flow in cities from supply, distribution, conversion, storage and consumption. Since some simulation software target a specific energy system, it is necessary to integrate them to predict present and future urban energy needs. However, a key drawback is that, these tools are not compatible with each other as they use custom or propriety formats. Furthermore, they are designed as desktop applications and cannot be easily integrated with third-party tools (open source or commercial). Thereby, missing out on potential model functionalities which are required for sustainable urban energy management. In this paper, we propose a solution based on Service Oriented Architecture (SOA). Our approach relies on open interfaces to offer flexible integration of modelling and computational functionality as loosely coupled distributed services

    LINKING 3D BUILDING MODELS, MAPS AND ENERGY-RELATED DATA IN A WEB-BASED VISUALIZATION SYSTEM

    Get PDF
    In a transformation process to become a climate-neutral city campus, universities have to deal with the sustainable concept. Since “human factor” plays a significant role in the transformation process, providing easy access to environmental data to influence building occupants’ behavior is essential. By utilizing energy-related data without spatial attribute and existing building geospatial data, data visualization in a web browser can be established for both 2D and 3D platforms. Our implementation presents a visualization of indoor sensor measurement data, where the same geospatial data can be used for both 2D and 3D visualizations even though the 3D platform needs an adjustment. Our approach results in a monitoring tool prototype based on visualization of indoor sensors measurement data, which can be accessed easily in a web browser by all building occupants

    GEO-VISUALISATION AND VISUAL ANALYTICS FOR SMART CITIES: A SURVEY

    Get PDF
    Geo-Visualisation (GV) and Visual Analytics (VA) of geo-spatial data have become a focus of interest for research, industries, government and other organisations for improving the mobility, energy efficiency, waste management and public administration of a smart city. The geo-spatial data requirements, increasing volumes, varying formats and quality standards, present challenges in managing, storing, visualising and analysing the data. A survey covering GV and VA of the geo-spatial data collected from a smart city helps to portray the potential of such techniques, which is still required. Therefore, this survey presents GV and VA techniques for the geo-spatial urban data represented in terms of location, multi-dimensions including time, and several other attributes. Further, the current study provides a comprehensive review of the existing literature related to GV and VA from cities, highlighting the important open white spots for the cities’ geo-spatial data handling in term of visualisation and analytics. This will aid to get a better insight into the urban system and enable sustainable development of the future cities by improving human interaction with the geo-spatial data

    RESOLUTION IN PHOTOVOLTAIC POTENTIAL COMPUTATION

    Get PDF

    PREFACE

    Get PDF
    Abstract. Simply defined, a Smart City is a city overlaid by a digital layer, which is used for the governance of the city. A Smart City uses intelligent technology to enhance our quality of life in urban environments, bringing together people and data from disparate sources such as sensors, demographics, topographic and 3D mapping, Building Information Models and many more. Increasingly, Smart Cities use this data in a variety of ways, to address key challenges related to transportation, communications, air quality, noise, well-being of the citizens, decision making relating to education and health and urban planning, as well as in relation to initiatives such as startups and fostering economic growth and employment within the city. As more data becomes available, the challenges of storing, managing and integrating such data are also multiplied.The first Urban Data Management Symposium (UDMS) was held in 1971 in Bonn, Germany, made the choice of hosting the 6th international conference on Smart Data and Smart Cities (SDSC) in Stuttgart a very natural one. SDSC was established in 2016 as the successor of the UDMS, and this year we celebrate the 40th anniversary of the series of symposia and conferences. The SDSC 2021 will be part of the scientific week on intelligent cities at HFT Stuttgart. Together four events were held during the week of 14th – 17th September 2021, and alongside SDSC participants were invited to attend the "Energy, water and food for the cities of the future" conference, the "LIS-City – liveable, intelligent, and sustainable City" workshop, and the mobility day Stuttgart. Participant interaction – and the ability to attend sessions across the four events – was particularly encouraged. SDSC 2021 itself was organised by the Urban Data Management Society (UDMS www.udms.net), ISPRS and HFT Stuttgart (the University of Applied Science Stuttgart), and Professor Volker Coors Chaired the SDSC committee.As in previous years, three key conference themes were proposed to represent the Smart Cities: Smart Data (sensor network databases, on-the-fly data mining, geographic and urban knowledge modeling and engineering, green computing, urban data analytics and big data, big databases and data management), Smart People (volunteered information, systems for public participation) and Smart Cities (systems of territorial intelligence, systems for city intelligence management, 3D modeling of cities, internet of things, social networks, monitoring systems, mobility and transportation, smart-city-wide telecommunications infrastructure, urban knowledge engineering, urban dashboard design and implementation, new style of urban decision-making systems, geovisualization devoted to urban problems, disaster management systems).This volume consists of 18 papers, which were selected from 41 submissions on the basis of peer review. These papers present novel research concerning the use of spatial information and communication technologies in Smart Cities, addressing different aspects relating to Smart Data. Selected papers tackle different aspects of Smart Cities: transport, sustainable mobility; dashboards and web GIS; citizen engagement and participation; sensors; urban decision making.The editors are grateful to the members of the Scientific Committee for their time and valuable comments, which contributed to the high quality of the papers. Reviews were contributed by: Alias Abdul-Rahman, Giorgio Agugiaro, Ken Arroyo Ohori, John Barton, Martina Baucic, Filip Biljecki, Lars Bodum, Pawel Boguslawski, Azedine Boulmakoul, Matteo Caglioni, Caesar Cardenas, Eliseo Clementini, Volker Coors, Youness Dehbi, Abdoulaye Abou Diakité, Adil El Bouziri, Claire Ellul, Tarun Ghawana, Gesquiere Gilles, Didier Grimaldi, Ori Gudes, Stephen Hirtle, Martin Kada, Lamia Karim, Robert Laurini, Christina Mickrenska-Cherneva, Christopher Petit, Alenka Poplin, Ivana Racetin, Dimos Pantazis, Preston Rodrigues, Camilo Leon Sanchez, Genoveva Vargas Solar, Nils Walravens, Parag Wate, Besri Zineb, Sisi Zlatanova. We are also grateful to the work of the local organising committee at HFT Stuttgart, without whom this conference would not have been possible

    PREFACE

    Get PDF
    Abstract. Simply defined, a Smart City is a city overlaid by a digital layer, which is used for the governance of the city. A Smart City uses intelligent technology to enhance our quality of life in urban environments, bringing together people and data from disparate sources such as sensors, demographics, topographic and 3D mapping, Building Information Models and many more. Increasingly, Smart Cities use this data in a variety of ways, to address key challenges related to transportation, communications, air quality, noise, well-being of the citizens, decision making relating to education and health and urban planning, as well as in relation to initiatives such as startups and fostering economic growth and employment within the city. As more data becomes available, the challenges of storing, managing and integrating such data are also multiplied.The first Urban Data Management Symposium (UDMS) was held in 1971 in Bonn, Germany, made the choice of hosting the 6th international conference on Smart Data and Smart Cities (SDSC) in Stuttgart a very natural one. SDSC was established in 2016 as the successor of the UDMS, and this year we celebrate the 40th anniversary of the series of symposia and conferences. The SDSC 2021 will be part of the scientific week on intelligent cities at HFT Stuttgart. Together four events were held during the week of 14th – 17th September 2021, and alongside SDSC participants were invited to attend the "Energy, water and food for the cities of the future" conference, the "LIS-City – liveable, intelligent, and sustainable City" workshop, and the mobility day Stuttgart. Participant interaction – and the ability to attend sessions across the four events – was particularly encouraged. SDSC 2021 itself was organised by the Urban Data Management Society (UDMS www.udms.net), ISPRS and HFT Stuttgart (the University of Applied Science Stuttgart), and Professor Volker Coors Chaired the SDSC committee.As in previous years, three key conference themes were proposed to represent the Smart Cities: Smart Data (sensor network databases, on-the-fly data mining, geographic and urban knowledge modeling and engineering, green computing, urban data analytics and big data, big databases and data management), Smart People (volunteered information, systems for public participation) and Smart Cities (systems of territorial intelligence, systems for city intelligence management, 3D modeling of cities, internet of things, social networks, monitoring systems, mobility and transportation, smart-city-wide telecommunications infrastructure, urban knowledge engineering, urban dashboard design and implementation, new style of urban decision-making systems, geovisualization devoted to urban problems, disaster management systems).This volume consists of 14 papers, which were selected from 41 submissions on the basis of double blind review, with each paper being reviewed by a minimum of three reviewers. These papers present novel research concerning the use of spatial information and communication technologies in Smart Cities, addressing different aspects of Smart Data and Smart Citizens. The selected papers tackle different aspects of Smart Cities: 3D; Citizen Engagement; transport, sustainable mobility; dashboards and web GIS; citizen engagement and participation; sensors; urban decision making.The editors are grateful to the members of the Scientific Committee for their time and valuable comments, which contributed to the high quality of the papers. Reviews were contributed by: Alias Abdul-Rahman, Giorgio Agugiaro, Ken Arroyo Ohori, John Barton, Martina Baucic, Filip Biljecki, Lars Bodum, Pawel Boguslawski, Azedine Boulmakoul, Matteo Caglioni, Caesar Cardenas, Eliseo Clementini, Volker Coors, Youness Dehbi, Abdoulaye Abou Diakité, Adil El Bouziri, Claire Ellul, Tarun Ghawana, Gesquiere Gilles, Didier Grimaldi, Ori Gudes, Stephen Hirtle, Martin Kada, Lamia Karim, Robert Laurini, Christina Mickrenska-Cherneva, Christopher Petit, Alenka Poplin, Ivana Racetin, Dimos Pantazis, Preston Rodrigues, Camilo Leon Sanchez, Genoveva Vargas Solar, Nils Walravens, Parag Wate, Besri Zineb, Sisi Zlatanova. We are also grateful to the work of the local organising committee at HFT Stuttgart, without whom this conference would not have been possible

    PREFACE

    Get PDF
    n/

    PREFACE

    Get PDF
    n/

    INTEROPERABLE VISUALIZATION OF 3D CITY MODELS USING OGC’S STANDARD 3D PORTRAYAL SERVICE

    Get PDF
    The demand of serving large 3D spatial data, mainly of urban areas, reflects the need of hierarchical data structures for 3D data. During the last years the OGC community standard I3S (Indexed 3d Scene Layer, ESRI) and 3D Tiles (Analytical Graphics, Inc.) emerged in order to deal with this challenge. Conceptually, hierarchical structures for 3D data operate similarly to web map tiles, differing only in the implementation. Although 3D hierarchical formats can transmit arbitrary sized geospatial data, they are not interoperable with consuming/visualization technologies on the client. A series of prototype implementations focus on rendering of hierarchical organized massive 3D data in various web client technologies employing the 3D Portrayal Service. As a result, the user can query a scene via the 3D Portrayal Service by specifying a spatial region, rather than a specific resource via a URI. The result is delivered either using I3S or 3D Tiles as a data delivery format, depending on which data is available for the specified region. The client APIs are capable of rendering either the I3S or the 3D Tiles content
    • …
    corecore